57 research outputs found

    Curvatronics with bilayer graphene in an effective 4D4D spacetime

    Get PDF
    We show that in AB stacked bilayer graphene low energy excitations around the semimetallic points are described by massless, four dimensional Dirac fermions. There is an effective reconstruction of the 4 dimensional spacetime, including in particular the dimension perpendicular to the sheet, that arises dynamically from the physical graphene sheet and the interactions experienced by the carriers. The effective spacetime is the Eisenhart-Duval lift of the dynamics experienced by Galilei invariant L\'evy-Leblond spin 12\frac{1}{2} particles near the Dirac points. We find that changing the intrinsic curvature of the bilayer sheet induces a change in the energy level of the electronic bands, switching from a conducting regime for negative curvature to an insulating one when curvature is positive. In particular, curving graphene bilayers allows opening or closing the energy gap between conduction and valence bands, a key effect for electronic devices. Thus using curvature as a tunable parameter opens the way for the beginning of curvatronics in bilayer graphene.Comment: 8 pages, 3 figures. Revised version with additional materia

    Morse Theory for geodesics in singular conformal metrics

    Full text link
    Motivated by the use of degenerate Jacobi metrics for the study of brake orbits and homoclinics, we develop a Morse theory for geodesics in conformal metrics having conformal factors vanishing on a regular hypersurface of a Riemannian manifold.Comment: 22 pages. To appear in Communications in Analysis and Geometr

    Functions on the sphere with critical points in pairs and orthogonal geodesic chords

    Full text link
    Using an estimate on the number of critical points for a Morse-even function on the sphere Sm\mathbb S^m, m≥1m\ge1, we prove a multiplicity result for orthogonal geodesic chords in Riemannian manifolds with boundary that are diffeomorphic to Euclidean balls. This yields also a multiplicity result for brake orbits in a potential well.Comment: 12 pages, 3 figure

    Gravitational collapse of homogeneous scalar fields

    Full text link
    Conditions under which gravity coupled to self interacting scalar field determines singularity formation are found and discussed. It is shown that, under a suitable matching with an external space, the boundary, if collapses completely, may give rise to a naked singularity. Issues related to the strength of the singularity are discussed.Comment: LaTeX2e; revised versio

    On the normal exponential map in singular conformal metrics

    Get PDF
    Brake orbits and homoclinics of autonomous dynamical systems correspond, via Maupertuis principle, to geodesics in Riemannian manifolds endowed with a metric which is singular on the boundary (Jacobi metric). Motivated by the classical, yet still intriguing in many aspects, problem of establishing multiplicity results for brake orbits and homoclinics, as done in [6, 7, 10], and by the development of a Morse theory in [8] for geodesics in such kind of metric, in this paper we study the related normal exponential map from a global perspective.Comment: 10 page

    Electronic properties of curved few-layers graphene: a geometrical approach

    Get PDF
    We show the presence of non-relativistic L\'evy-Leblond fermions in flat three- and four-layers graphene with AB stacking, extending the results obtained in [Curvatronics2017] for bilayer graphene. When the layer is curved we obtain a set of equations for Galilean fermions that are a variation of those of L\'evy-Leblond with a well defined combination of pseudospin, and that admit L\'evy-Leblond spinors as solutions in an approriate limit. The local energy of such Galilean fermions is sensitive to the intrinsic curvature of the surface. We discuss the relationship between two-dimensional pseudospin, labelling layer degrees of freedom, and the different energy bands. For L\'evy-Leblond fermions an interpretation is given in terms of massless fermions in an effective 4D spacetime, and in this case the pseudospin is related to four dimensional chirality. A non-zero energy band gap between conduction and valence electronic bands is obtained for surfaces with positive curvature.Comment: 16 pages, 4 figures. Matches the published version. Refined theory that describes the unique combination of isospin states ocurring in curved bilayer graphene sheet

    New mathematical framework for spherical gravitational collapse

    Get PDF
    A theorem, giving necessary and sufficient condition for naked singularity formation in spherically symmetric non static spacetimes under hypotheses of physical acceptability, is formulated and proved. The theorem relates existence of singular null geodesics to existence of regular curves which are super-solutions of the radial null geodesic equation, and allows us to treat all the known examples of naked singularities from a unified viewpoint. New examples are also found using this approach, and perspectives are discussed.Comment: 8 pages, LaTeX2

    Spherically symmetric perfect fluid in area-radial coordinates

    Full text link
    We study the spherically symmetric collapse of a perfect fluid using area-radial coordinates. We show that analytic mass functions describe a static regular centre in these coordinates. In this case, a central singularity can not be realized without an infinite discontinuity in the central density. We construct mass functions involving fluid dynamics at the centre and investigate the relationship between those and the nature of the singularities.Comment: Accepted by CQG. LaTex file, 14 pages, no figure

    Collapse of spherical charged anisotropic fluid spacetimes

    Full text link
    A class of spherical collapsing exact solutions with electromagnetic charge is derived. This class of solutions -- in general anisotropic -- contains however as a particular case the charged dust model already known in literature. Under some regularity assumptions that in the uncharged case give rise to naked singularities, it is shown that the process of shell focusing singularities avoidance -- already known for the dust collapse -- also takes place here, determing shell crossing effects or a completely regular solution.Comment: 13 pages, 2 figures. Version to appear on Class Quantum Gra
    • …
    corecore